Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids.
نویسندگان
چکیده
The phase behavior of rodlike molecules with polydisperse length and solvent-mediated attraction and repulsion is described by an extension of the Onsager theory for rigid rods. A phenomenological square-well potential is used to model these long-range interactions, and the model is used to compute phase separation and length fractionation as a function of well depth and rod concentration. The model closely captures experimental data points for isotropic/liquid crystalline phase coexistence of single-walled carbon nanotubes (SWCNTs) in superacids. The model also predicts that the isotropic-biphasic boundary approaches zero as the acid strength diminishes, with the possibility of coexistence of isotropic and liquid crystalline phases at very low concentrations; this counterintuitive prediction is confirmed experimentally. Experimental deviations from classical theories for rodlike liquid crystals are explained in terms of polydispersity and the balance between short-range repulsion and long-range attractions. The predictions of the model also hold practical importance for applications of SWCNT/superacid solutions, particularly in the processing of fibers and films from liquid crystalline SWCNT/superacid mixtures.
منابع مشابه
Modeling the phase behavior of polydisperse rigid rods with attractive interactions, with applications to SWNTs in superacids
The phase behavior of rodlike molecules with polydisperse length and solventmediated attraction and repulsion is described by an extension of the Onsager the∗Current address: Department of Chemical Engineering, Texas Tech University, Lubbock TX 79409, [email protected]
متن کاملInelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method
This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...
متن کاملMolecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کاملDFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube
The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...
متن کاملEffects of Structure and Partially Localization of the π Electron Clouds of Single-Walled Carbon Nanotubes on the Cation-π Interactions
A C102H30 graphene sheet has been rolled up to construct Single-Walled Carbon NanoTube Fragments (SWCNTFs) as parts of armchair carbon nanotubes by computational quantum chemistry methods. Non-covalent cation-π interactions of the Na+ cation on the central rings of SWCNTFs have investigated. The binding energies of the Na+-SWCNTF complexes versus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 131 8 شماره
صفحات -
تاریخ انتشار 2009